Legal and Ethical Challenges for Driverless Cars and Smart Roads

Chris Connolly (Galexia Director)

chrisc@galexia.com

October 2017

galexia

Driverless cars

» Level 4 and Level 5 on the autonomous vehicle scale – no driver at all, with a computer making all decisions once a navigation target and some basic rules are set

Smart roads

- » Road networks that interact with all vehicles and road infrastructure (traffic lights, speed limits etc.)
- » Most vehicles from 2018 will be fitted with an automatic transponder and older vehicles can be retro-fitted
- » Modern roads have some smart infrastructure built in more on the way
- Driverless cars and smart roads are a rapidly emerging technology the law is famously poor at keeping up with new technology

Top 6 Legal and Ethical Challenges

- 1. Privacy
- 2. Safety and Selection
- 3. Liability
- 4. Cultural Differences
- **5. Traffic Priorities**

6. Trust

1. Privacy

Constant broadcast

- » A typical transponder broadcasts vehicle type and make, speed, braking, acceleration, indicators etc.
- » The transponder is identified by a signed digital certificate (to avoid fraud and impersonation)

Access requests

Requests will be common for both live and historical movement and location data
from law enforcement, lawyers in civil disputes, general traffic management etc.

Privacy law

Privacy law currently relies on notice and consent (difficult for vehicles) and in any case provides huge exceptions for law enforcement, emergencies etc.

Privacy by design

» A Privacy Impact Assessment can often identify solutions – for example, in one 'privacy friendly' option a bundle of certificates for each transponder can be randomly shuffled

2. Selection

Safety and selection

- » Often called 'The Trolley Problem' where an accident resulting in a fatality is unavoidable, how do you decide who should die?
- » You can even 'play' a game based on the Trolley Problem at MIT:
- » <u>http://moralmachine.mit.edu/</u>

Case study: Germany (Guidelines 2017)

- » Self-driving cars must **prioritise human life over property and animals**.
- » Self-driving cars must **do the least amount of harm** if put into a situation where hitting a human is unavoidable
- » Self-driving cars must **not discriminate** based on age, gender, race, disability, or any other observable factors.
- » <u>http://www.bmvi.de</u>

Overview

» A common approach to determining liability is to assess which party has the greatest ability to avoid damage. A supplementary test is which party has the greatest ability to compensate for any damage

Vehicle manufacturers

- » In order to build confidence in driverless cars, some manufacturers have offered an indemnity for any damage (but check the fine print!)
- » Manufacturers are unlikely to be able to avoid liability for any damage resulting from their **negligence** in design or implementation (due to consumer protection laws - but these laws differ from country to country)

Owners

» Owners may be pressured to accept some liability (e.g. in contracts). There are protections against unfair contract terms in the UK.

Insurance

» Compulsory insurance is likely to be the long term solution to liability issues for driverless cars – the manufacturer indemnities are more akin to an introductory offer or stunt

4. Cultural Differences

Driving is cultural

- » More than just the left / right divide there are numerous national and regional differences in driving behavior and traffic management
- » Most approaches are based on customs or etiquette, but some are enshrined in law

Managing cultural differences

- » This will be challenging if algorithms for driverless cars are developed in just a handful of jurisdictions, or if AI is based on data initially obtained from just one culture.
- » Recent developments in AI have demonstrated an ability for AI to develop new knowledge itself, raising questions about 'who is really in charge'.
- » The most difficult phase will be when driverless cars and traditional cars have to share limited road space

5. Priorities

Smart roads will have the ability to prioritise specific vehicles and manage overall traffic patterns

- » General recognition that emergency vehicles will receive priority from driverless cars and smart road infrastructure (e.g, traffic signals)
- Some successful pilots of smart roads allowing individual heavy goods vehicles (and convoys) to reach a destination with minimal stopping (reduces environmental impact and road maintenance)

Who determines these priorities?

- » Significant potential for conflict, bias and influence
- » Potential for entrenching privilege / disadvantage

Al and priorities

» In one AI experiment the AI becomes more aggressive as the challenge becomes more competitive

6. Trust

Trust is a key issue when you are relying on an algorithm to make key decisions

- » Users may not be able to see or understand the details of the algorithm
- » The algorithm may make selections or priorities without the consumer being aware
- Trust in the vehicle / transport sector is in crisis many industry players are 'disrupters' who have gone to great lengths to avoid or undermine regulation
- For example, Uber is a leading player in the driverless car sector. They have been the subject of a series of controversies, including:
 - » Two major privacy breaches where senior management directed staff to place 'opponents' (journalists) under surveillance and even directly threatened journalists with revealing their personal data
 - » Revelations that Uber had developed and used specific software (Greyball) to identify and avoid regulatory staff (e.g. inspectors)

Numerous vehicle manufacturers have also been caught up in the emissions testing fraud scandal

Conclusion

Overall, driverless cars and smart roads have the potential to deliver significant benefits

- » Driverless cars are not affected by fatigue, alcohol, health conditions and distractions
- » Smart roads and transponders allow vehicles to 'see' traffic hidden by hills, corners, fog, snow and blinding light
- » Traffic management and vehicle priority (e.g. emergency vehicles) are enhanced by smart roads and transponders
- However, key issues will require careful management, including direct intervention and regulation
- Al and algorithms need to be transparent and subject to rules and restraints
- The core approach should be: "Even if there is no driver behind the wheel, a human is always in charge"

Further information

Galexia

» <u>http://www.galexia.com/</u>

US database of driverless car legislation

» http://www.ncsl.org

Privacy Impact Assessment on Smart Roads (Australia, 2017)

» http://www.galexia.com/public/about/news/about_news-id470.html

Germany: Guidelines on Driverless Cars and Ethics (2017)

» <u>http://www.bmvi.de/</u>

